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Using bhe Fourier components of the velocity potential at the surface in an iterative 
perturbation theory, the author derives expressions for the modal frequency shifts 
and modal decay rates in a spectrum of inviscid gravity-capillary surface waves. The 
expressions differ from those calculated by the perturbation methods of Hasselmann 
(1962) and Valenzuela & Laing (1972), which are based on expanding the velocity 
potential about the equilibrium fluid level z = 0. This difference is shown to be due to 
the failure of the z = 0 perturbation method to converge rapidly enough to produce 
lowest-order corrections that are smaller than unperturbed quantities. A physical 
explanation for this failure is given. 

1. Introduction 
Hasselmann (1962) and Valenzuela & Laing (1972) have used perturbation theory 

to derive expressions for the modal decay rates in a spectrum of gravity waves and 
gravity-capillary waves, respectively. These derivations are based on retaining the 
first few terms in an expansion of the fluid-velocity potential about the equilibrium 
fluid level z = 0. This expansion is equivalent to approximating ekv, where lc is the 
wavenumber of a surface wave and y is the height of the surface above z = 0, by the 
first few terms in a Taylor series about y = 0 : 

ekq N 1 + k~ + &k2q2 + 3k3q3 + &k4q4. (1.1)  

Such an approximation is useful if ky  is not too large. In  the case of a spectrum of waves 
the condition for the accuracy of (1.1) becomes? 

&k2(y2)  < 1, (1.2) 

which was explicitly recognized by Phillips (1960) as limiting the validity of his 
analysis of nonlinear interactions among a quartet of discrete gravity wave modes. If 
the mean value (y2) is calculated for wind-driven gravity waves in equilibrium, we 
obtain (Phillips 1969, chap. 4) 

In  this equation B 2 4.6 x 10-3, U = wind speed and g = 9.8m/s2. For a lm gravity 
wave and a 30 knot wind, we have from (1.3) 

&k2(q2) = ik2B( U2/g)2.  (1.3) 

&k2(y2)  = 26.9, (1.4) 

t Since the probability distribution of 7 is, to lowest order, Gaussian, it follows that the 
mean value (exp ( k ~ ) )  = exp [&k2(7f)] ,  and exp [l] is well approximated by the first four terms 
of its Taylor series. 
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which violates (1.2). Furthermore, if k is the wavenumber of a capillary wave, the 
quantity $k2(y2) can easily be greater than 1000. 

The examples above suggest that perturbation methods based on the z = 0 expan- 
sion of the velocity potential may not converge rapidly enough to produce lowest-order 
quantities that are small deviations from unperturbed quantities. To determine the 
validity of this conjecture we need to calculate, using the z = 0 method, some quantity 
that has a non-zero unperturbed value. The modal decay rate will not do, for its value 
is zero in the unperturbed linear case. An appropriate quantity appears to be the 
modal frequency, which for gravity-capillary waves has an unperturbed value 
w,(k) = (gk + Tk3)*, where T is the surface tension per unit density. 

In  this paper expressions for both the modal frequency shift and the modal decay 
rate will be calculated by two different perturbation methods: the z = 0 expansion 
method of Hasselmann (1962) and Valenzuela & Laing (1972) and a method that uses 
the Fourier components of the velocity potential evaluated on the fluid surface 
z = y(x, y, t).  Section 2 of the paper contains a review of the modal equations and a 
derivation of a relationship between the z = 0 and z = q(x,  y, t )  perturbation methods. 
In  5 3, the modal equations are solved by iteration. Section 4 contains the final steps 
leading to the derivation of both z = 0 and z = y expressions for the modal frequency 
shifts and modal decay rates. A comparison of the z = 0 and z = methods is made in 
§ 5.  

2. Basic modal equations 
The velocity potential $(x, y, z ,  t )  and surface deformation z = q(z, y, t )  describing 

inviscid wave motion of an infinitely deep fluid obey the equations (Landau & 
Lifshitz 1959, chaps. I and VIII)  

a+/az = D y p t ,  (2.1 1 

(2.2) 

V2$ = 0, (2.3) 

a$/at + $(V$)2 = -gV + TV . S ,  

where the derivatives of $(x, y, z ,  1 )  in (2.1) and (2.2) are evaluated at  

and 

g is the gravitational acceleration, T is the surface tension and, for convenience, the 
density is set equal to one. The equilibrium level of the fluid is z = 0. 

Both q(x y, t )  and $(x, y, z ,  t )  can be expanded in modes with $ satisfying (2.3): 

where 

q(z,  y , t )  = - ZBk(t)eik-r, 
It 
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n is the two-dimensional number vector whose components are positive and negative 
integers and r is the two-dimensional horizontal position vector; the orthogonality 
relation with this box normalization is? 

where 
1 if k = 1, 

= ( 0 if k # l .  

(2.9) 

(2.10) 

Substituting (2.6) and (2.7) into (2.1) and (2.2) and following Hasselmann (1962) and 
Valenzuela & Laing (1972) by expanding eke in (2.7) about z = 0, we obtain 

(2.11) 

x A k l B k  - IC1 Cl(kl, k,; N )  8,) 
wo(lC1) 

kl C,(k,, k,, k,; N )  g3) + higher-order terms, (2.12) (g)' 2 Bka Bk3 o,O 
and 

where 

and 

(2.13) 

(2.14) 

Oo(k) k1 kz C3(k1, k,; N )  8,) 
-k e) ' Ak1Ak2 k wo(kl) wo(k,) 

the sums are over the subscripted wavenumbers and 

S(2) 
k,k,+kzy 8(3) 8k,kl+kn+k,* 

Expressions for Cl(kl, k,), C,(kl, k,), C3(k1, k,), C4&, k,, k3), C5(kl, k,, k,), and 
C,(kl, k,, k,) are given in appendix A. 

Equations (2.1 1)-(2.15) are equivalent to equations (2.12) and (2.13) in Valenzuela 
& Laing (1972) except for what appears to be a typographical error in their paper. This 
apparent error is discussed in appendix B. 

Instead of using the velocity-potential coefficient A k ( t )  defined by (2.7), we can use 
the coefficient &(t) defined by 

(2.16) 

t Box normalization is convenient in many problems involving interacting waves. Its most 
common use in theoretical physics is in quantum mechanics [see, for example, Schiff 1955, 
pp. 49-50]. L is a large length, eventually to be taken infinite. 

$(z, y, 2 = T ( X ,  y, t ) ,  t )  = - z &(t) eik.r. ri) k 

25-2 
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The relationship between A k ( t )  and A k ( t )  is found by setting x = q(z, y, t )  in (2.7), 
expanding about z = 0 and using (2.6): 

A,(t) = A k ( t )  + - k1 A k l ( t )  ( t )  8,) 

+ (g), 2 ~k21Ak,(t)B~B(t)Bks(t)S(3)+ ..., (2.17) 

(3 
which can be iterated to give 

= - e) c kl Bkl(t)  B k 2 ( t )  &2) 

+ - [kll k, + kJ - ik:] d k l ( t )  B k z ( t )  B k , ( t )  + . . . . (2.18) (T), 
Substitut,ing (2.18) into (2.11)-(2.15), we obtain equations that are identical in form 
except that A, is replaced by x k  and C,, C,, C,, etc., are replaced by different functions 
el, c,, c3, etc., which are also given in appendix A. I n  the case T = 0, the new equations 
for i f k  and Bk are equivalent to equations ( 1  I ) ,  (15) and (16) of Watson & West (1975) 
except that these aut,hors have additional terms T,, and T, which represent the effects 
of wind and slowly varying surface currents. Apparently regarding their use of the 
Fourier components of the potential at  the surface as a convenience, Watson & West 
(1975) state that their equations, except for the terms T, and T,, are equivalent to 
Hasselmann’s (1962) equations, despite the fact that the coefficients el, C,, etc., are 
functionally different from C,, C,, etc. As we shall see in $ 5 ,  where we compare the 
solution for A ,  and Bk with the solution for x k  and Bk, this assertion is not correct. 

In  the analysis t,o follow we shall solve (2.11)-(2.15) by an iterative perturbation 
technique. Since the forms of the equations for the two pairs (Ak, Bk) and (A& Bk) are 
identical except for the coefficients c,, c,, etc., the solution for the pair ( x k ,  Bk) is 
determined by substituting 0, for c,, e 2 f m  c,, etc, in the solution for the pair (Ak, B k ) .  

3. Iterative solution of the modal equations 
By introducing a new quantity 

(3.1) 

(3.2) 

(3.3) 

so that 

and 
Bk = d + f z k  

A k -  --i- war) ( c k  - E[*k) 

we can combine (2.11) and (2.13) into the first-order differential equation 

Equation (3.4) can be rewritten as 
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where 
-t exp ( - iw‘t) do’ s i 

Q,(t; k )  = - lim 
2~, ,0+ - m  w’-oo(k )+ i (T  

@(t) is the homogeneous (k; = 0) solution to  (3.4): 

where 
&‘)(t) = riexp [i@(t)]  exp (i,uk), 

@(t) = -6Jo(k)t 

(3.7) 

and ,uk is a time-independent phase. 

tp)(t)  which are of nth order in the unperturbed amplitude r:: 
A solution to (3.6) can be found by iteration. We expand &(t)  in a series of functions 

[ k ( t )  = [&‘)(t) + [i2)(t) + tf)(t) + . . . * (3.10) 

The function [i2)(t) is given by 

&?(t) = I:_“ C,(t - t ’ ;  k )Pf) ( t ’ )  dt‘, (3.11) 

where FL2) is found by substituting (3.10) into the expression for Fk and keeping terms 
of second order. Performing the integration in (3.1 l) ,  we obtain 

x M,(k,, k,)  + t!?e [it)H4(k1, k , ) ]  8,). (3.12) 

Expressions for M,(k,, k,), M,(k,, kz) ,  MJk,, k,) and M,(k,, k,) are given in appendix 
A. While further iterations could produce expressions for ti3), ti4), etc., they will not 
be required in this paper. 

For certain combinations of discrete modes the frequency denominators in (3.12) 
may become zero. If these combinations are present, (3.12) has infinite terms, and the 
iterative perturbation method we have employed fails to approximate &(t) .  In  this 
situation, a solution of (3.4) can, in principle, be found by solving a set of coupled 
amplitude and phase equations for the relevant modes (Hsu 1963). Benney (1962) 
and McGoldrick (1965) have investigated examples of such equations. In  the case of 
a continuous spectrum of modes, which will be discussed in 4 4, the singularities are 
integrable and do not appear in any observable quantities. 

4. Frequency perturbations and modal decay rates for 
gravity-capillary waves 

If we let 
8k; ( t )  = rk(t) exp [ - i8k(t ) l ,  

where r k ( t )  and O k ( t )  are real, then (3.4) implies that 

and 
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Since ek(t) is the negative of the instantaneous phase of &(t) ,  its time derivative, which 
is given by (4.2), is the instantaneous frequency of the kth mode. Equation (4.2) 
shows that this instantaneous frequency differs from the unperturbed frequency 
w,(k) by an amount 

(4.4) 

that depends on the nonlinear term pk(t) .  The frequency perturbation Awk(t) implies 
that the phase speed of the kth mode changes by an amount 

hCk(t) = h k ( t ) / k .  (4.5) 

Formulae for Ack(t) have been calculated by Longuet-Higgins & Phillips (1962) for 
three interacting gravity wave modes. 

The lowest-order expression for Aw,(t) that has a non-zero average is 

1 
AwL2)(t) = -- (1) Im [P2) ( t )  6L2)*(t) +Fi3)(t) &l)*( t ) ] ;  (4.6) 

16k ( ) I  
FL3)(t) is found by substituting (3.10) into (2.12) and (2.15) and retaining only terms of 
third order in the amplitudes @(t). 

The lowest-order expression for the instantaneous modal decay rate that has a 
non-zero average is 

1 
Re [Fi2)(t) (i2)*(t) + Pi3)@) @)*(t)]. j q ) ( t )  = --- = -- 

r k ( t )  dt I6PW I (4.7) 

The fact that the frequency perturbation Awiz)(t) and the decay rate hi2)(t) are related 
by being the imaginary and real parts, respectively, of the quantity Fk(g/l&12 is a 
well-known general property of systems of coupled modes (see, for example Gold- 
berger & Watson 1964, chap. 8). 

Since wind-driven ocean waves are stochastic in character (see, for example, 
Phillips 1969, chap. 4) only mean values of variables are observationally significant. 
From (4.6) and (4.7) we see that the mean values of Awh2)(t) and Ak2)(t) depend on the 
stochastic properties of the unperturbed amplitude &‘)(t). An assumption tha t  appears 
to fit the known properties of wind-driven ocean waves in equilibrium is that the 
amplitudes rho) of the Ei?(t) are non-stochastic constants which depend on k and that 
the random phases ,uk are statistically independent and uniformly distributed from 0 
to 277 (Longuet-Higgins 1957; Cartwright 1962). It is a standard result (Rayleigh 
1880; Chandrasekhar 1943) that these assumptions imply that the unperturbed 
surface 

d r k ( t )  

is, in the limit L + 00, a Gaussian random process with a spectral density $(k) related 
to Tio) by 

The probability distribution of the lowest-order wave height q(l)(z, y, t) is then given 
by the Gaussian distribution 

P[q(l)(x, y, t ) ]  = (2na2)-4 exp { - q(l)(z, y, t)z/2a2}, (4.10) 
where 

a2 = Sdk$(k); (4.11) 

$(k) = 2~iO)~. (4.9) 
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for wind-driven waves $(k) is the wind-wave spectrum. This result is supported by 
measurements of surface displacement distributions (see Phillips 1969, $4.10). Higher- 
order corrections to the wave height ~(z, y, t )  will result in a slight deviation of its 
probability distribution from the Gaussian distribution (4.10). 

The stochastic assumptions discussed above lead to the mean values 

(AWE)@))  = - (rf))-2 Im (Fi2)(t) ti2)*@) + Fi3)(t) @ ( t ) )  (4.12) 

(Ai2)(t)) = - (r$o))-2 Re (Fi2)(t) (i2)*(t) +Fi3)(t) [h]-)*(t)), (4.13) 

where angle brackets denote an average over the random phases pk. Performing these 

averages and taking the limit L-t co [recall that (2n/L)2 -+ dk], we obtain after 

some algebraic manipulations 

and 

k s 

x &3(k2, - k) + AR [or AR, as the case may be], (4.14) I 
where P denotes a principal-value integral, 

A - - dkl+(k,) (1  -kw0(k)  
R - 2  'S \2 
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Similarly, 

(@)(t)) = - dk1 dk2S(k - k1- k,) 6[w0(k) - wo(k1) - w0(k2)] "s 2 s 

f $(kZ) &3(k2, - kl) &3(k29 - k)]. (4.17) 

Here the function $(k) is the unperturbed wave spectrum. The use of A, or aR 
depends on which of the pairs of solutions (Ak, Bk) and (Ak, Bk) is involved. Expressions 
for &,(k,, k2), &,(k,, k,) and Q3(kl, k,) are given in appendix A. 

For a spectrum of waves, (4.14)-(4.16) give the lowest-order frequency perturbation 
due to the nonlinear terms in the equations of inviscid fluid dynamics. The mean 
phase-velocity perturbation (AwL2)(t))/k is the spectral analogue of the quantity given 
in equation (2.11) in Longuet-Higgins & Phillips (1962). 

Equation (4.17) gives the lowest-order modal decay rate due to nonlinear inter- 
actions in a gravity-capillary wave spectrum. For the z = 0 pair (Ak, Bk), it implies 
the same energy transfer rate as that calculated by Valenzuela & Laing (1972) after 
a correction has been made for what appears to be a typographical error in their 
paper.t For gravity waves alone (T = 0), (4.17) gives (Ak2)(t)) = 0 since the Dirac 
delta-functions in the integrands cannot be satisfied. This result is well known (Phillips 
1960). 

5. Comparison of the z = 0 and z = 9 methods 
Although both the z = 0 perturbation method for (Ak, Bk) and the z = 9 perturbation 

method for (&, Bk) may produce, for the same observable quantity, series expansions 
that eventually converge to the same value, their utility is determined by how rapidly 
these expansions converge. A crude criterion for rapid convergence is 

I < A 4 2 ) ( ~ ) ) / ~ o ( k )  I < 1 7  (5.1) 

which implies that the lowest-order corrections to the unperturbed motion are small 
deviations from the unperturbed motion. If (5.1) does not hold, the lowest-order 
corrections are not meaningful, and higher-order corrections must be calculated until 
the perturbation expansion begins to converge. 

When $(k) is Phillips' (1969, chap. 4)  spectral function 

t See appendix B. 
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where U is the wind velocity vector and B = 4.6 x 10-3, we can obtain estimates of 
(AwL2)(t))/wo(k) for gravity waves [T = 0, wo(k) = (gk)t]  and for k .U = kU and 

and 

(5.4) 

If the wind speed is about 30 knots, so that g/U2 = 4 x 
formulae give for k = 0-4 em-l 

em-l, then the above 

(Awi2)(t)) 2: - 61.7 from the z = 0 method 
UO(k) 

and 

(Awi2)(t)) N + 0.247 from the z = 7 method. 
WOW) 

(5.5) 

This comparison shows that the z = 0 perturbation method for A, and Bk violates 
(5.1) by a large margin while the z = 7 method for A k  and Bk satisfies (5.1). Equation 
(5.5) implies that the Hasselmann (1962) perturbation method produces lowest-order 
results which by themselves are meaningless. 

Frieda R. Boyle has performed a numerical evaluation of [(Aw~2)(t))/wo(k)], ,o for 
T = 0 using the spectrum (5.2) with g / V  = 4 x cm-l, which corresponds to a 
30 knot wind. Her results appear in table 1 along with values for this quantity cal- 
culated from (5.3). Boyle's evaluation shows that (5.1) is violated for k > 0.04cm-l 
and that the accuracy of (5.3) is poor when k is not considerably larger than g/U2.  
Values of [ ( A ~ L ~ ) ( t ) ) / w ~ ( k ) ] ~ = ~  for k > 0.4 cm-l can be calculated from (5.3), but they 
begin to be meaningless as k -+ 4 cm-l because surface tension becomes important. 
Numerical evaluations of (4.14), (4.16) and (4.17) for T # 0 are planned. 

The failure of the z = 0 perturbation method to satisfy (5.1) for the spectrum (5.2) 
is basically due to an unfortunate choice for the unperturbed solution. The un- 
perturbed velocity potential in the z = 0 method is 

This unperturbed solution oscillates so rapidly on z = ~ ( x ,  y, t ) ,  because of the factor 
exp ( k z ) ,  that the z = 0 perturbation method fails to converge quickly and produces 
large lowest-order corrections. Since the unperturbed potential in the z = 7 perturba- 
tion method satisfies a boundary condition on z = ~ ( x ,  y, t )  and not on z = 0, it does 
not involve the factor exp (kz )  and, consequently, does not oscillate rapidly for any 
value of z. Because of this well-behaved unperturbed potential, lowest-order cor- 
rections calculated with the z = 7 perturbation method are small. 

perturbation method and for the 
failure of the z = 0 perturbation method can be seen by recognizing that most wave 
spectra, such as the Phillips spectrum (5.2)) describe a situation in which the small 
amplitude, high wavenumber waves literally ride on the large amplitude, low wave- 
number waves. Consequently, the velocity potential of the high wavenumber waves 
should be defined relative to the surface created by the low wavenumber waves. 

A physical reason for the success of the z = 
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[ ( A 4 3 4  ) k J o ( ~ ) l z - *  
7 --__ 7- 

k (cm-l) Numerical evaluation Equation (5.3) 
0.0004 - 1.75 x lo-'? 2 - 0.2 x 10-2 
0.004 - 1.00 x 10-2 * 1 yo - 6.2 x 1 0 - 2  
0.04 - 1.52 ? 1 yo - 1.95 
0.4 - 5.87 x 10' 5 1 - 6.17 x 10' 

TABLE 1. Values of [ ( A ~ ~ ' ( t ) ) / o ~ ( k ) ] , , ~  for the spectrum (5.2) with g/U2 = 4 x 10-4cm-1 and 
k . U  = k U .  The upper integration limit for k is (g/T)c.  

This is accomplished by using A,, which is the Fourier component of the potential 
defined on the surface z = 7. Using the values of the potential on z = 0 to define the 
Fourier component of the potential of the high wavenumber waves makes little 
physical sense because the high wavenumber waves ride on a surface that, most of the 
time, is many of their wavelengths away from z = 0. 

The above considerations imply that the z = q perturbation method should be 
used for analysing nonlinear interactions in a spectrum of surface waves. The z = 0 
pert,urbation method developed by Hasselmann (1962) and used by Valenzuela & 
Laing (1972) simply converges too slowly to give meaningful laxest-order results over 
the spectrum of wind-driven waves in equilibrium. 

The author of this paper is grateful to Frieda R. Boyle for performing the numerical 
evaluations presented in table 1 and to Delores M. Stimbert for typing the manuscript. 
He acknowledges with appreciation the analytical advice given to him by FIieda R. 
Boyle, Dr Edward J. Chapyak and Dr William J. Karzas. 

Appendix A. Expressions for the C ,  K ,  1M and Q functions 
After some algebraic manipulations one can show that 

Cl(k,,k2) = *(kl.k2+k:), kl  
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and 

Cl(k,, k,) = *) [k, . k, + k,(k,  - I k, + k21)], (A 7)  

~,(kl’k,)  = 0,  (A 8 )  

kl 

Appendix B. Comparison of (4.17) with Valenzuela & Laing 
From appendix A we obtain 

(B 1) 
wo(k1)wo(k2) k Dk+l:i& 

klk, Wo(kI2  
Kl(k1, k,) + K,(k,, k,) = i 

K3(k,  - k,) + K4( - k,, k) = i wo(k,) D+. + k, wo(k) kl, Irr7 
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where k = k,  + k ,  and wo(k)  = wo(k,) + wo(k,), and 

where k = k2 - k,  and wo(k) = w0(k2) - wo(kl);  in (B 1)-(B 6), D:;,;; is defined by 

where w, = slwo(kl), w2 = s,w,(k,) and k = Is1 k, +s, k21. 
If we use the expressions 

P ( k )  = k-lW0(k), $(k)  

aP(k)/at = - 2 k - ’ ~ , ( k ) ~  (hh2)(t)) $(k), 

(B 8) 

(B 9) 

which follow from the definition of F ( k )  as the lowest-order energy density spectrum 
[Valenzuela & Laing 1972, equation (3.3)], and substitute the expression for (hL2)(t)) 
given by (4.17) with the D functions replacing the K functions according to (B 1)-(B 6),  
then we obtain equation (3.5) of Valenzuela & Laing (1972). Unfortunately, our 
expression (B 7) is not t’he same as that derived by Valenzuela & Laing, who obtain 
[below their (2.12)] 

and 

The difference between (B 7 )  and (B 10) appears to be due to typographical errors in 
Valenzuela & Laing’s paper. As a check on (B 7),  we observe that for T = 0 it agrees 
wit,h Hasselmann [ 1962, equation (4.3)], who derives for an infinite bottom 

Dk,%2 = i ( w l +  w 2 )  ( k ,  k ,  - k,  . k,). (B 11) 

Equation (B 10) does not agree with (B 1 1 )  for T = 0. 
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